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Procedures for Adjusting Regional Regression Models 
of Urban-Runoff Quality Using Local Data 

By Anne B. Hoos and Joy K. Sisolak 

ABSTRACT 

Statistical operations termed model-adjustment procedures (MAP’s) can be used to incorporate 
local data into existing regression models to improve the prediction of urban-runoff quality. Each 
MAP is a form of regression analysis in which the local data base is used as a calibration data set. 
Regression coefficients are determined from the local data base, and the resulting ‘adjusted’ 
regression models can then be used to predict storm-runoff quality at unmonitored sites. The 
response variable in the regression analyses is the observed load or mean concentration of a 
constituent in storm runoff for a single storm. The set of explanatory variables used in the 
regression analyses is different for each MAP, but always includes the predicted value of load or 
mean concentration from a regional regression model. The four MAP’s examined in this study 
were: single-factor regression against the regional model prediction, P, (termed MAP-lF-P), 
regression against P,, (termed MAP-R-P), regression against P, and additional local variables 
(termed MAP-R-P+nV), and a weighted combination of P, and a local-regression prediction 
(termed MAP-W). 

The procedures were tested by means of split-sample analysis, using data from three cities 
included in the Nationwide Urban Runoff Program: Denver, Colorado; Bellevue, Washington; and 
Knoxville, Tennessee. The MAP that provided the greatest predictive accuracy for the verification 
data set differed among the three test data bases and among model types (MAP-W for Denver and 
Knoxville, MAP-lF-P and MAP-R-P for Bellevue load models, and MAP-R-P+nV for Bellevue 
concentration models) and, in many cases, was not clearly indicated by the values of standard error 
of estimate for the calibration data set. A scheme to guide MAP selection, based on exploratory 
data analysis of the calibration data set, is presented and tested. 

The MAP’s were tested for sensitivity to the size of a calibration data set. As expected, 
predictive accuracy of all MAP’s for the verification data set decreased as the calibration data-set 
size decreased, but predictive accuracy was not as sensitive for the MAP’s as it was for the local 
regression models. 

INTRODUCTION 

Urban land use has been shown to be a major source of nonpoint-source pollution. Recognizing this, 
the amendments of 1987 to the Clean Water Act require that cities with populations of more than 100,000 
provide estimates of storm-runoff loads from urban areas to receiving streams (U.S. Environmental 
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Protection Agency, 1990, p. 48070). City engineers have a variety of options for developing these 
estimates, ranging from simple empirical techniques (Young and others, 1979; U.S. Environmental 
Protection Agency, 1983; Schueler, 1987) to more advanced statistical regression (Driver and Tasker, 1990) 
and conceptually-based models (reviewed in Huber, 1986; Nii, 1991). The Driver-Tasker models are 
regression models of storm-runoff quality (constituent load and mean concentration) on physical, land-use, 
and climatic characteristics from the data base of the Nationwide Urban Runoff Program (NURP). Separate 
sets of regression models were developed for mean-annual runoff quality and for single-storm runoff quality. 

Regardless of the method selected, provision should be made for adjustment of the ‘a priori’ prediction 
using local urban-runoff quality data currently being collected in each city to meet additional regulatory 
requirements (U.S. Environmental Protection Agency, 1990, p. 4806948070). The local storm-load data 
base for each city will consist in most cases of about three storms at 5-10 sites, or about 15-30 load 
observations. 

A procedure to adjust the regional single-storm models (Driver and Tasker, 1990) for a particular city, 
using a small data base from that city, was presented in a recent study by Hoos (1991). Although such 3 

model adjustment procedure (MAP) may seem to be 3 reasonable approach, at least intuitively, several 
unanswered questions come to the fore about the validity of this procedure and of possible alternative 
procedures. For example: 

l What are the assumptions for the several proposed MAP’s, and can these be codified for potential 
adjustors as they examine their local data bases? For example, is there a minimum size for a local data 
base to be used in the various MAP’s, below which size the assumptions in the procedures are not 
valid? 

l Of all statistically valid MAP’s, which will provide the most reliable predictions for unmonitored sites? 

l Do the models for constituent load differ from the models for constituent mean concentration with respect 
to their suitability for MAP’s? 

l How can the uncertainty of an adjusted-model prediction for an unmonitored site be estimated? 

Purpose and Scope 

The purpose of this investigation is to provide information regarding appropriate statistical methods for 
combining or weighting regional model predictions of storm-runoff quality with local data. This report 
describes: 

l the assumptions for four proposed MAP’s, and how these assumptions translate into requirements for the 
local data base; 

l a scheme for selecting the appropriate adjustment procedure based on exploratory data analysis of the local 
data base; 

l results from split-sample tests of the four proposed MAP’s and the selection scheme; and 

l expressions for calculating standard errors of prediction and confidence intervals for unmonitored sites 
using each of the proposed MAP’s. 
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REGIONAL REGRESSION MODELS OF URBAN-RUNOFF QUALITY 

Urban-runoff quality at unmonitored sites is commonly estimated using either deterministic models of 
washoff and transport processes in the watershed or statistical models calibrated with observed data at other 
sites. Although in the case of estimating at unmonitored sites, neither type of model can be calibrated with 
at-site data, the statistical-model approach has the advantage of providing a measure of the uncertainty in the 
model predictions. This advantage could be an important consideration for city engineers or planners 
res 
co1 P 

onsible for developing remedial water-quality management programs or designing additional data- 
ection programs. 
Regression models were developed by the U.S. Geological Survey (Driver and Tasker, 1990) from 

regression analysis of the NURP national data base (Mustard and others, 1987; U.S. Environmental 
Protection Agency, 1983). Separate sets of regression models were developed for mean-annual runoff 
quality and for single-storm runoff quality. The single-storm regression models relate storm-runoff quality 
(constituent load and mean concentration, the response variables) from a single storm to easily measured 
physical, land-use, and climatic characteristics (the explanatory variables). Models were developed for 
11 constituents: chemical oxygen demand (COD), suspended solids (SS), dissolved solids (DS), total 
nitrogen (TN), total ammonia plus organic nitrogen as nitrogen (TKN), total phosphorus (IF), dissolved 
phosphorus (DP), total recoverable cadmium (CD), total recoverable copper (CU), total recoverable lead 
(PB), and total recoverable zinc (ZN). A set of three models corresponding to three regional divisions was 
developed for each constituent load (Driver and Tasker, 1990, tables 1 and 3) and for each constituent mean 
concentration (Driver and Tasker, 1990, table 5). The basis for the regional divisions was mean annual 
rainfall (region I, less than 20 inches; region II, 20-40 inches; region III, greater than 40 inches), which 
provided the best results of seven bases tested for regionalization/stratification (Driver and Tasker, 1990, 
p. 5). Standard errors of estimate (SE) were generally smallest for region I models and largest for region III 
models (table l), indicating that as mean annual rainfall increases, the ability to estimate storm-runoff quality 
decreases. 

Table 1. Standard errors of estimate for regional regression madels of storm-runoff loads and mean concentrations of 
selected constituents 

[Vsluer for standard error of estimate (SE) from Driver and Tasker, 1990, tables 2, 3, and 6; COD, chemical oxygen demand; TKN, total kjeldahl 
nitrogen; PB, total recoverable lead; SS, suspended solids; Lea, stepwise-analysis regression model for storm-runoff load; Cta, stepwise-analysis 
regression model for stem-~noff medn concentration; u, 3-variable rcgmesion model for storm-mnoff load] 

Standard error of estimate 

Model 

Region I Region II Region III 

Percent Log Percent Log Percent LotI 

COD.Lsa 86 0.324 97 0.355 169 0.505 
COD.Csa 61 .245 79 .303 78 .300 
COD.L3 116 .403 106 .376 186 .531 
TKN.LSl3 71 .277 106 .377 165 .498 
TKN.Csa 60 .242 85 .321 85 ,321 
TKN.L3 129 .431 107 .381 184 ,529 
PB.Lsa 141 .455 131 .435 227 .586 
PB.Csa 88 .331 103 .371 179 ,414 
PB.L3 166 .500 135 A42 228 .586 
SS.Lsa 230 .589 165 ,498 265 .627 
SS.Csa 131 .434 128 .427 178 .519 
SS.L3 251 .613 173 .512 290 .651 
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Two separate sets of models of storm-runoff load were developed for each constituent and for each 
region. One set, referred to as the stepwiseanalysis regression models, was developed ftom a stepwise 
regression analysis of 13 candidate explanatory variables; the number of explanatory variables selected as 
significant for a particular model ranged from three to six (Driver and Tasker, 1990, table 1). The second 
set included only the three most significant explanatory variables: total storm rainfall, total contributing 
drainage area, and impervious area (Driver and Tasker, 1990, table 3). For the purpose of this report, the 
stepwise-analysis load and concentration models will be referred to as Lsa and Csa, respectively, and the 
3-variable load models as L3. The Lsa models fit the observed data better than L3 models (table 1). SE 
measures fit of observed data rather than predictive accuracy. The fit of the load and concentration models 
shouldl not be compared on the basis of SE, because the response variable units in each case were different. 

A final set of national regresion models was developed to predict load from an average storm (response 
variable) based upon five explanatory variables (Driver and Tasker, 1990, table 10). Estimates from these 
models can be used in conjunction with an estimate of the average number of storms per year to yield an 
estimate of mean annual load. 

LOCAL URBAN-RUNOFF QUALITY DATA 

Faced with the need to develop estimates of storm-runoff quality for a large number of unmonitored 
sites, a city engineer might wish to employ the published regression models, provided the published standard 
errors of estimate are deemed acceptable (table 1). A separate option would be to test the published models 
by comparing regional single-storm model (henceforth termed regional model) estimates with available local 
urban-runoff quality data to appraise the predictive accuracy of the regional models for the particular city of 
interest. The magnitude of the model errors could indicate the relative accuracy and usefulness of these 
models for estimating loads and mean concentrations of constituents for watersheds in that city. 

When regional-model results prove inaccurate for estimating storm-runoff quality in a particular city, the 
city engineer might wish to use local data to ‘adjust’ (through a partial recalibration procedure) the regional 
models and obtain more accurate results. Local data bases used for the adjustment of regional models should 
possess certain attributes if the adjustments are to result in more accurate estimates. Among these attributes 
are: 

l Ihe monitoring sites in the local data base should represent a wide range of conditions of physical 
characteristics (size of drainage area, percent impervious area) and land-use characteristics. This will 
ensure that the values for these explanatory variables at any unmonitored site for which an estimate is 
desired will fall within the range represented by the local data base. It may be useful to compare the 
range represented by the local data base with the range represented by the regional NURP data base 
(Driver and Tasker, 1990, table 4). 

l The monitored storm in the local data base should represent a wide range of storm characteristics (rotd 
stem rainfall, duration of each storm, and antecedent conditions), for the same reason cited previously. 
Although explanatory variables related to antecedent conditions (for example, preceding number of dry 
days, amount of rainfall during the preceding day, 3 days, or 7 days) are not included in the regional 
models, such variables could account for some of the unexplained error in these models and, therefore, 
may be candidates for use in adjusting the models. 

The following discussion illustrates the use of a local data base (for a hypothetical City X, located in 
region II) to test the validity of the regional models for a particular city. Data for storm-runoff load of COD 
have been collected during three storms at each of five sites in City X, with a resulting data base of 15 
observations. For each of these observed loads, a corresponding predicted load can be computed by 
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evaluating the explanatory variables and applying the regional model for COD for region IX. The observed 
and corresponding predicted values are shown in figure 1 for each of the 15 events. Examination of the 
pattern of correspondence (or lack of correspondence) between observed aud corresponding predicted values, 
and knowledge of the local data base and NURP data base for region II, can lead to one of the following 
conclusions. 

5,000 r 

E l PREDICTED FROM REGIONAL MODEL 

0 OBSERVED IN STORM SAMPLE 

n 

0 
n 

0 

n n 

10 ’ 
1A 1 B 1C 2A 28 2C 3A 38 3C 4A 48 4C 5A 58 SC 

SITE/STORM NUMBER 

Figure 1. Observed and predicted chemical oxygen demand load in storm runoff for City X’s local data base. 

One possible conclusion is that the site or storm characteristics (explanatory variables) represented by the 
local data base are not representative of the full range of storm-runoff conditions in City X, whereas the 
characteristics of the calibration data set for the region II models are representative. Consequently, the 
regional-model predictions, although appearing inaccurate for estimating the local data, might be more 
accurate estimates for a typical unmonitored site and typical storm in City X. Explanations for drawing such 
a conclusion might include: knowledge that sites in the local data base might be influenced by point-source 
discharges, or knowledge that storms monitored for the local data base are atypical of average storm 
characteristics for City X. 

A second possible conclusion is that the regional model predictions are biased relative to actual storm- 
runoff conditions in City X, and that the observations in the local data base are representative of local 
conditions. Conditions supporting this conclusion might include: (1) the values of the explanatory variables 
for watersheds in City X are consistently outside the range of values for explanatory variables in the NURP 
region II data base (for example, mean annual rainfall in City X is higher than for any city included in the 
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region II data base); and (2) a physical, land-use, or climatic variable not tested or included, but responsible 
for some of the unexplained error in the regional model, might have a different range of values for City X 
relative to cities included in the NURP region II data base (for example, drainage-structure construction 
materials or practices used in City X might be different from materials or practices used in any NURP 
region II city; the range of antecedent conditions occurring in City X might be different from the range of 
antecedent conditions occurring in any NURP region II city). If either of these two conditions can be shown 
to exist in City X, then it might be valid to adjust the regional models for application to unmonitored sites. 

PROCEDURES FOR ADJUSTING REGIONAL REGRESSION MODELS OF URBAN-RUNOFF 
QUALITY USING LOCAL DATA 

Beffore any particular adjustment procedure for a constituent model is considered, it is helpful to examine 
the pattern of correspondence between the observed and predicted values from the local data base. The 
pattern illustrated in figure 1 has the following characteristics, both of which tend to indicate that model 
adjustment is a valid approach: 

(1) the direction of bias of predicted values relative to observed values is consistent (in the case of figure 1, 
it is a consistent positive bias), and 

(2) the predicted and observed values are significantly and positively correlated, so that the variation in 
predicted values explains much of the variation in the observed values. This implies that the regional 
model explains or models the relation between the response variable and the explanatory variables. 

Consistent direction of bias in the local data base (predicted and observed data pairs) can be determined 
by a signed rank test on the paired data (Iman and Conover, 1983, p. 256-260). Correlation of the predicted 
and observed data can be determined by the teat for significance of the rank correlation coefficient, 
Spearman’s rho (r,) (Iman and Conover, 1983, p. 341). If the test statistic from each of these tests is 
significant at the selected level, then it might be concluded that a MAP is a valid approach. 

Model-Adjustment Procedures 

All of the MAP’s considered in this report are in the form of a regression analysis (or, in one case, a 
weighting of the results of two separate regression analyses) in which local data are used for calibration. 
Regression coefficients are determined using local data, and the resulting ‘adjusted’ regression models are 
then used to predict storm-runoff quality at unmonitored sites. The response variable in the regression 
analyses is the observed load or mean concentration of a constituent in storm runoff for a single storm. The 
set of explanatory variables used in the regression analyses is different for each procedure, but always 
includes the predicted value of load or mean concentration from the regional single-storm model. The name 
for each procedure is an acronym describing the form of the procedure and the set of explanatory variables: 
for example, MAP-R-P denotes a model-adjustment procedure (MAP) in the form of a regression (R) on the 
single explanatory variable, predicted value (P) from the regional single-storm model. 

Values for the response and explanatory variables were transformed to log units for the regression 
analysis. From the analysis by Driver and Tasker of the large NURP database, both response and 
explanatory variables most closely approximate a normal distribution when a log transformation is used 
(Driver and Tasker, 1990, p. 6). Because the response variables and most of the explanatory variables used 
in the adjustment procedures were also included in Driver and Tasker’s analysis, it is appropriate to use the 
same transformation. 
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Single-Factor Regression Against Regional Prediction 

Single-factor regression against the predicted value from the regional model, or MAP-lF-P, is a 
modification of simple linear regression. In this modification, the coefficient, &, shown in equation 1 below 
is forced to unity (suggested by Timothy A. Cohn and Gary D. Tasker, U.S. Geological Survey, oral 
commun., 1990; documented in Hoos, 1991). The log-transformed observed values of load or concentration 
in the calibration data set (the local data base) are regressed against the corresponding log-transformed 
predicted values from the unadjusted regional model using only one calibration coefficient: 

logO= po+ p ,logP,, 

where 
0 is observed values of storm-runoff load or mean concentration; 
p&J is predicted values of storm-runoff load or mean concentration from the unadjusted regional model 
PO is the single calibration coefficient; and 
Bl is the regression coefficient forced to unity. 

Because MAP-lF-P is not a true regression procedure, the value for the calibration coefficient, /Jo, is 
determined from the calibration data set (local data base) according to a simple formula rather than from the 
standard regression formula. Using equation 1, the value for flo can be computed as: 

p,=igm& 

where the overbar denotes mean value. 

An adjusted prediction at an unmonitored site i can then be calculated (from the detransformation of 
equation 1) as 

(2) 

(3) 

where 
pai is the adjusted-model predicted value of storm-runoff load or mean concentration at unmonitored 

site i; 
d’0 is lOa0; 
pui is the unadjusted-regional-model predicted value of storm-runoff load or mean concentration at 

unmonitored site i; and 
BCF is a bias correction factor. 

The BCF must be included in the detransformed model if an unbiased estimate of the mean is to be obtained 
(Driver and Tasker, 1990; Miller, 1984; and Duan, 1983). The BCF is calculated for each adjustment 
procedure using a nonparametric method based on the average residuals in original units: 

BCF=+ lo”‘, (4) 
n 

where 
ei is the least-squares residual for observation i from the calibration data set, in log units; and 
It is the number of observations. 
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This procedure is appropriate under two sets of conditions: (1) a small calibration data set (the local 
data base might consist of only 15 data pairs) argues against attempting to calibrate more than one 
coeffkient, and (2) the relation between explanatory variables and the response variable appears to be 
adequately modeled by the regional model (t, is significant and positive) and the predicted values are biased 
in a consistent direction (test statistic from signed rank test is significant) and by a constant factor. 

Regression Against Regional Prediction 

In the second procedure (MAP-R-P), log-transformed observed values are regressed against a single 
independent variable (log-transformed predicted values from the unadjusted regional model) in a standard 
linear regression: 

bP=0,+B,*logp,, 6) 

where 
BOA are coefficients determined from a simple linear regression analysis of the calibration data set 

(local data base). 

An adjusted prediction at an unmonitored site i (Pti) can then be calculated (from the detransformation of 
equation 5) as 

There are two cases in which the use of this MAP could be preferable to MAP-lF-P. In areas where 
the calibration data set is relatively large (more than 20 observations), calibration of two regression 
coefficients can be justified and might provide more accurate results. In other areas, adjustment by a single 
factor might not be adequate because the difference between the log-transformed observed and predicted 
values may be a function of the magnitude of the values. Inclusion of the additional & regression 
coeffkient could model this functionality (W.O. Thomas, Jr., U.S. Geological Survey, oral commun., 
1991). 

Regression Against Regional Prediction and Additional Local Variables 

In the third procedure (MAP-R-P+nV), log-transformed observed values are regressed against several 
independent variables (including the log-transformed predicted values from the unadjusted regional model) in 
a multiple linear regression: 

where 
BOA...,&+, are coefficients determined from multiple linear regression analysis of the calibration 

data set (local data base); and 
v,,v, ,..., v, are values of additional explanatory variables from the calibration data set. 
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An adjusted prediction at an unmonitored site I (PJ can then be calculated (from the detransformation of 
equation 7) as 

(8) 

This MAP (MAP-R-P + nV) might be appropriate when the pattern of correspondence between 0 and P,, 
indicates that a MAP based on P,, alone (MAP-lF-P or MAP-R-P) is not appropriate (when the test statistic 
from either the signed rank test or the test for significance of r, is not significant). The most likely 
candidates for inclusion as additional explanatory variables are physical, land-use, or climatic variables not 
tested or included in the regional model, but suspected of being significant and a possible source of 
unexplained error. Antecedent dry days is presented by Driver and Tasker (1990, p. 11-12) as such a 
variable (although the evidence is contradictory). Because of its inconsistent appearance in the NURP data 
base, it was excluded from the regression analysis. Percent of drainage area under construction also was 
presented by Driver and Tasker as a potential variable, particularly for prediction of suspended sediment 
load or concentration. In cities where the calibration data set (local data base) is relatively large (more than 
30 observations), calibration of three or more regression coefficients can be justified and might provide more 
accurate results, 

Weighted Combination of Regional Prediction and Local-Regression Prediction 

The fourth procedure (MAP-W) differs fundamentally from the other suggested MAP’s. Rather than 
resulting from regression analysis of observed values against regional-model predicted values (and possibly 
other variables), the prediction at an unmonitored site i is calculated from an explicit weighting algorithm 
that weights the predicted value from the unadjusted regional model with a predicted value based only on the 
local monitoring data (D.R. Helsel, U.S. Geological Survey, oral cormnun., 1992): 

where 
ji is a weighting factor (a fraction between 0 and l), which has a unique value for each unmonitored 

site; and 
P IOCi is the predicted value at unmonitored site i based on local data. 

The value for Plo, at the unmonitored site i might be derived from a regression model from the local 
data base (a regression analysis of observed values against values for selected physical, land-use, and 
climatic characteristics), or might be set as the mean value of the observed values. The weighting factor, ji, 
is a function of the variances of prediction at the unmonitored site i (Vpi> resulting from the estimating 
procedures for PIN and P, (G.D. Tasker, U.S. Geological Survey, oral conunun., 1992): 

vji-&U 
ji= (V,-,+V,J’ 
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V,-,=SEk(l +x@)-~x$, 

v’,=SE;(l +r,@‘ZF1~J. 

(11) 

(12) 

where 
V pi-lot 
V pi-n 

s%c 
SE” 

is variance of prediction at unmonitored site i for the local regression model; 
is variance of prediction at unmonitored site i for the unadjusted regional model; 
is standard error of estimate (in log units) for the local regression model; 
is standard error of estimate (in log units) computed from the regional (NURP) calibration data set 

for the unadjusted regional model; 
is a (1 x p) row vector of the p-l explanatory variables used in the local regression, evaluated (in 

log units) for unmonitored site i, augmented by a 1 as the first element; 
is a (n x p) matrix of the p-l explanatory variables used in the local regression, evaluated (in log 

units) for all n sites in the local calibration data set, augmented by a 1 as the first column; 
is a (1 x k) row vector of the k-l explanatory variables used in the regional regression, evaluated 

(in log units) for unmonitored site i, augmented by a 1 as the first element; and 
is a (m x k) matrix of the k-l explanatory variables used in the regional regression, evaluated (in 

log units) for all m sites in the regional (NURP) calibration data set, augmented by a 1 as the 
first column. 

SE, is taken from the published values (Driver and Tasker, 1990, tables 2, 3, and 6) for the regional model; 
these values are included for selected constituents and model types in table 1 of this report (in columns titled 
‘Log’). 

SE,, can be computed according to the general formula for SE: 

(13) 

where 
SE is standard error of estimate of a regression model for the calibration data set, in log units; 
Oi is i* observed value for the response variable in the calibration data set; 
pi is i* fitted value for the response variable in the calibration data set; 
II is number of observations in the calibration data set; and 
k is number of explanatory variables in the regression model. 

The matrix operations are factored into the formulas for Vpi to make ji responsive to the difference 
between the explanatory-variable values for the unmonitored site and the mean values for the calibration data . . sets associated wnh P,, and P,&. A simpler, although statistically less valid, formula for VP can be 
employed by dropping the term comprising the matrix operations from equations 11 and 12 giving: 

(14) 
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In this case, the variance of prediction and the weighting factor are not calculated uniquely for an 
unmonitored site i, but rather are constants (V, andj, rather than Vpi and]i) for a particular city and 
constituent. 

The MAP-W might be appropriate (as was the case for MAP-R-P+nV) when the pattern of 
correspondence between 0 and P,, indicates that a MAP based on P,, alone (MAP-lF-P or MAP-R-P) is not 
appropriate (when the test statistic from either the signed rank test or the test for significance of r, is not 
significant). Selection of explanatory variables for the local regression analysis should be made using 
accepted statistical procedures; for example, a best-regression analysis. A list of candidate explanatory 
variables should be compiled based upon knowledge of processes controlling storm-runoff quality in the area 
of interest. A starting point for the compilation of this list might be the six or seven most significant 
variables from the regional regression analyses of Driver and Tasker. The absolute value of the standardized 
beta coefficient for an explanatory variable (Driver and Tasker, 1990, table 4) can be used as an indication 
of its significance in their analysis. The analyst can then add other explanatory variables believed to be 
controlling variables of urban runoff quality (for example, antecedent dry days, or percent of drainage area 
under construction). The best regression model for a set of k explanatory variables can then be determined 
by regression analysis of the 2k possible subsets and comparison of an appropriate statistic from the 
regression (for example, the PRESS statistic or Mallows Q; see Draper and Smith, 1981, for additional 
information on these methods). The analyst, however, might wish to restrict his choice to subsets with 
fewer than a certain number of variables depending upon the size of the calibration data set. 

Selection of appropriate adjustment procedures 

The conditions for application of each MAP cited in the preceding discussion are organized into a 
scheme (fig. 2) to select the most appropriate MAP for a selected constituent model and local data base. 
This scheme is based solely on exploratory data analysis (EDA) of the local data base. 

In the first operation in this scheme, the analyst determines if any adjustment procedure is necessary, or 
if the regional model can be used without adjustment. Examination of data plots of P, and 0, similar to 
figure 1, and evaluation of an appropriate error statistic, such as root mean square error, can guide the data 
analyst in determining whether the prediction error of the unadjusted regional model is within acceptable 
limits. 

Next the analyst performs the test for significance of r, and the signed rank test. If the test statistic 
from each of these tests is significant at the selected level, then a MAP based on P, alone [MAP-lF-P and 
MAP-R-P) is most appropriate. The choice between these two MAP’s can be based on either the size of the 
calibration data set (as indicated in figure 2), or consideration as to whether the observed bias can be 
corrected by a constant factor @, for the MAP-R-P is not significantly different from unity for the 
calibration data set). 

If either of the test statistics is not significant at the selected level, the analyst continues the EDA, 
testing the correlation between the response variable and the candidate explanatory variables to be used in 
MAP-R-P+nV and MAP-W. If any of the correlations is significant, the analyst may select either 
MAP-R-P+nV or MAP-W. No basis is known for choosing between MAP-R-P +nV and MAP-W using 
EDA. 

If none of the tested correlations are acceptably significant, then the analyst should reject the MAP 
approach for that constituent. Two possible alternatives are: (1) use a simple estimator, such as mean 
value of the response variables from the local data base, to estimate constituent load and mean concentration; 
or (2) collect sufficient local runoff quality data to allow for calibration of a completely independent, local 
regression model. 
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Other logical schemes for selecting the appropriate MAP are possible. The analyst could calibrate and 
compute associated error statistics (for example, SE or PRESS) for all MAP’s, then use relative values of 
error statistics to guide selection of the MAP. Using SE alone to guide MAP selection is shown later to be 
unreliable. The PRESS method (Draper and Smith, 1981) cross validates a calibration using a 1 and (n-l) 
data split of the calibration data set repeated n times, and therefore the PRESS statistic may be a more 
reliable indicator of predictive accuracy. No scheme based on comparison of calibration error statistics 
alone, however, can provide the basis for deciding whether the MAP approach is valid for a particular data 
base and constituent, or whether some alternative to model adjustment should be sought. The scheme 
presented in figure 2 does provide such a basis. 

Model-Adjustment Procedure Testing 

The four proposed MAP’s were tested for relative predictive accuracy for unmonitored sites or storms, 
and for relative sensitivity to size of the calibration data set. The performance of each MAP was compared 
among each type of model (Lsa, Csa, L3) to determine whether the models differed in their suitability for a 
particular MAP. The results of these tests were used in turn to measure the success of the MAP selection 
scheme described in figure 2. 

Test Procedures 

Testing was accomplished using a split-sample analysis of three separate data bases; the ‘local’ data 
bases for the NURP study areas in Denver, Colorado (region I), Bellevue, Washington (region II), and 
Knoxville, Tennessee (region III). Each region was represented so that each set of regional models could be 
tested. Values for storm-runoff load (response variable) were read directly from archived data files for each 
city (Mustard and others, 1987, table 1). Values for storm-runoff mean concentration (response variable) 
were calculated by dividing storm-runoff load, in pounds, by average storm-runoff depth over the basin, in 
inches, and by total contributing drainage area, in square miles, multiplied by a conversion factor. Predicted 
values from the unadjusted regional model were computed from values for the basin and storm 
characteristics (explanatory variables) read from the archived data files. 

For the split-sample analysis, the data base for each city was divided into two data sets; a calibration 
data set and verification data set. Division into two groups of about equal size was accomplished following a 
systematic procedure to avoid bias. Individual storms were ordered first by site number and multiple storms 
at each site were ordered chronologically. Storms on this master list were then assigned alternately to the 
calibration or verification set. This resulted in sample sixes for the calibration and verification sets of 56 
each for the Denver data base, 41 each for the Bellevue data base, and 31 each for the Knoxville data base. 

The EDA and MAP selection scheme prescribed in figure 2 were applied to the calibration data set from 
each data base to select the most appropriate MAP for each constituent model. Values for the test statistics 
and the selected MAP option are presented separately for the Bellevue, Denver, and Knoxville data bases 
(tables 2, 3, and 4, respectively). For the Bellevue data base, the MAP-lF-P or MAP-R-P were selected for 
most of the load models, whereas the MAP-R-P+nV or MAP-W were selected for two of the four 
concentration models (table 2). For most constituents in the Denver data base, the MAP-R-P+nV or 
MAP-W were selected for both load and concentration models (table 3). For most constituents in the 
Knoxville data base, the EDA suggested that the MAP approach should be rejected in favor of alternatives 
(table 4). 

Following initial exploratory data analysis, observations in the calibration data set were used to derive 
coefficients (&,/3,,. . ., j3.+,, defined in equations 1, 5, and 7; and SE,,,, defined in equations 11 and 13) for 
the MAP’s. Two indications of predictive accuracy were computed and compared among the MAP’s for the 
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Table 2. Exploratory data analysis of the calibration data sets from the data base for Bellevue, Washington 

[RMSE, root mean square error between observed and predicted (from unadjusted regional model) values of the response variable, in log units; 6, 
Spearman’s rho; 0.005 is the selected level of significance for the test statistic; 0, observed value of the response variable; P., predicted value of 
response variable from the unadjusted regional model; TEN, total storm rainfall; DA, total contributing drainage area; IA, impervious area; ADD, 
antecedent dry days; COD, chemical oxygen demand; TKN, total kjeldahl nitrogen; PB, total recoverable lead; SS, suspended solids; Lsa, stepwise 
analysis regression model for storm-runoff load; Csa, stepwise-analysis regression model for storm-runoff mean concentration; L3, 3-variable 
regression model for storm-runoff load] 

0 and P, 
positively 

Consistent 
d$actct~ 

Oc6G~Gk 

Prediction error correlated 
Correlation of 

cor;Fhted 

Constit- 
*itpt- 

Signifi- Signifi- variable with 0 
uent and 

v 

Y 
cant at cant at vart- Best 

model type RMSE sma I? r, 0.0051 p-value 0.0057 TRN DA IA ADD able? MAP 

COD .Lsa 0.459 N 
COD.Csa A40 N 
COD.L3 .433 N 
TKN.Lsa .345 N 
TKN.Csa .339 N 
TKN.L3 .449 N 
PB.Lsa .379 N 
PB.Csa .360 N 
PB.L3 .412 N 
SS.Lsa .495 N 
SS.Csa .435 N 
SS.L3 .711 N 

0.893 Y <0.0001 
.428 Y < .OOOl 
.887 Y < .OOOl 
.875 Y < .OOOl 
.239 N < .OOOl 
.876 Y < .OOOl 
.806 Y < .OOOl 
.327 N .0002 
.792 Y .002 
.814 Y < .OOOl 
.205 N < .OOOl 
.816 Y < .OOOl 

Y 0.760 
Y -.469 
Y .760 
Y .753 
Y -.322 
Y .753 
Y .632 
Y -.300 
Y .718 
Y .800 
Y .007 
Y .800 

0.358 -0.434 -0.130 .Y MAP-lF-P; MAP-R-P 
-.099 -.020 .571 Y MAP-lF-P; MAP-R-P 
.358 -.434 -.130 Y MAP-lF-P; MAP-R-P 
.409 -.460 -.142 Y MAP-lF-P; MAP-R-P 
.066 -.150 .513 Y MAP-R-P+nV; MAP-W 
.409 -.460 -.142 Y MAP-lF-P; MAP-R-P 
.417 -.375 -.215 Y MAP-lF-P; MAP-R-P 

-.063 -.046 .506 Y MAP-R-P+nV; MAP-W 
.322 -.394 -.lOO Y MAP-lF-P; MAP-R-P 
.210 -.296 -.266 Y MAP-lF-P; MAP-R-P 

-.200 -.022 .222 N None 
.210 -.296 -.266 Y MAP-IF-P; MAP-R-P 

Table 3. Exploratory data analysis of the calibration data sets from the data base for Denver, Colorado 

[RMSE, root mean square error between observed and predicted (from unadjusted regional model) values of the response variable, in log units; r,, 
Spearman’s rho; 0.005 is the selected level of significance for the test statistic; 0, observed value of the response variable; P., predicted value of 
response variable from the unadjusted regional model; TRN, total storm rainfall; DA, total contributing drainage area; IA, impervious area; ADD, 
antecedent dry days; COD, chemical oxygen demand; TKN, total kjeldahl nitrogen; PB, total recoverable lead; Lsa, stepwise-analysis regression 
model for storm-runoff load; Csa, stepwise-analysis regression model for storm-runoff mean concentration; L3, 3-variable regression model for 
storm-runoff load] 

Constit- 
uent and - - - -. . - 
model type 

0 and P, 
positively 

Consistent 

Prediction error correlated 
d;;e;;;; 

0 signifi- 
cantly 

correlated 
Correlation of with 

*Fhy- Signifi- Signifi- variable with 0 
cant nt cant at any 

van- Best 
DA IA able? MAP 

- -. . _ - - - -. . _ - _ 
RMSE s%eil? r, 0.005? p-value 0.0051 TRN 

COD.L,sa 
COD.Csa 
COD.L3 
TKN.Lsa 
TKN.Csa 
TKN.LS 
PB.Lsa 
PB.Csa 
PB.W 

0.336 N 0.741 
.216 Y .754 
.344 N .69 
.305 N .83 
.225 Y .691 
.375 N .768 
.458 N .797 
.282 Y .631 
.499 N .787 

0.784 
.28 
.025 
.245 
.245 
.0008 
.0778 
.0117 
.0092 

0.446 0.511 -0.078 
-.788 .228 .020 
.446 .511 -.078 
.524 .604 -.117 

-.685 -.153 .145 
.524 .604 -.117 
.144 .857 -.449 

-.539 .379 .354 
-.144 .857 -A49 

MAP-R-P+nV; MAP-W 
MAP-R-P+nV; MAP-W’ 
MAP-R-P+nV; MAP-W 
MAP-R-P+nV; MAP-W 
MAP-R-P+nV; MAP-W’ 
MAPlF-P; MAP-R-P 
MAP-R-P+nV; MAP-W 
MAP-R-P+nV; MAP-W 
MAP-R-P+nV; MAP-W 

’ The value for Rh4SE indicates, however, that the regional model could be used unadjusted. 
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Table 4. Exploratory data analysis of the calibration data sets from the data base for Knoxville, Tennessee 

[RMSE, root mean square error between observed and predicted (from unadjusted regional model) values of the response variable, in log units; r,, 
Spearman’s rho; 0.005 is the selected level of significance for the test statistic; 0, observed value of the response variable; P,, predicted value of 
response variable from the unadjusted regional model; TBN, total storm rainfall; DA, total contributing drainage area; IA, impervious area; ADD, 
antecedent dry days; COD, chemical oxygen demand; TKN, total kjeldahl nitrogen; PB, total recoverable lead; Lsa, stepwise-analysis regression 
model for storm-runoff load; Csa, stepwise-analysis regression model for storm-runoff mean concentration; W, 3-variable regression model for 
storm-runoff load] 

0 and P, Consistent 
oositivalv direction 

error Prediction ‘correlated of bias correlated 
Correlation of with 

Constit- 
uent and A”aEP’- 

Signifi- Signifi- variable with 0 
cant at cant at 

any 
van- 

model type RMSE smal? r= Y 0.0057 p-value 0.005) TRN DA IA able? 
Best 
MAP 

COD.Lsa 
COD.Csa 
COD.L3 
TKN.Lsa 
TKN.Csa 
TKN.L3 
PB.Lsa 
PB.Csa 
PB.L3 

0.641 N 0.481 Y <0.0001 
.497 N .050 N < .OOOl 
.625 N .581 Y .9999 
.924 N .320 N < .OOOl 
.481 N .069 N .0014 
.894 N .42S Y < .OOOl 
.639 N .614 Y < .OOOl 
.296 Y .181 N .9999 
.714 N .614 Y < .oooo 

Y 0.356 0.199 0.283 
Y -.498 .012 .003 
N .356 .199 .283 
Y .232 .245 .280 
Y -.449 .341 -.041 
Y .232 .245 .280 
Y .320 .314 .227 
N -.449 .341 -.041 
Y .320 .314 .227 

MAP-lF-P; MAP-R-P 
None 
None 
None 
None 
MAP-IF-P; MAP-R-P 
MAP-lF-P; MAP-R-P 
None’ 
MAP-lF-P; MAP-R-P 

’ The value for BMSE indicates, however, that the regional model could be used unadjusted. 

calibration data set; the coeffkient of determination (r”) and the standard error of the estimate (SE). If the 
r2 value is multiplied by 100, it represents the percentage of variation in the response variables that is 
explained by the explanatory variables. The SE is a measure of how well the estimated values (from the 
MAP) agree with the observed values for the calibration data set, and -is computed, in log units, according to 
equation 13. The SE, in percent, can be calculated from the SE, in log units, according to the formula 

The SE can be interpreted as follows: approximately two out of three observed values will fall within one 
SE of the estimated value, if the residuals are normally distributed. Computer programs used to perform the 
exploratory data analysis and MAP-calibration calculations for each calibration data set are given in 
Supplements A and B, respectively. 

Log-transformed observations in the verification data set were used to measure how well the adjusted 
models estimated the response variables (log-transformed storm-runoff load and mean concentration) for an 
unmonitored site or storm. Predictive accuracy for the verification data set was measured using the root 
mean square error of the estimated response variable, calculated as: 
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where 
Rit4SEv is root mean square error for the verification data set, in log units; 

Qioi, is i* observed value for the response variable in the verification data set; 
Pi,, is i* predicted value for the response variable in the verification data set; and 

n is number of observations in the verification data set. 

The relative predictive accuracy of the MAP’s for the verification data set was used in turn to measure the 
success of the MAP selection scheme. This was accomplished by comparing the selected MAP (tables 2, 3, 
and 4) for a constituent model with the MAP with the smallest RUSE”. 

The Lsa, Csa, and L3 models for the constituents COD, TKN, PB, and SS were included in the testing. 
The regional models for TKN were among the most accurate developed by Driver and Tasker (1990, p. 32), 
whereas the regional models for SS were the least accurate. Consequently, the results for these selected 
constituents might be expected to provide an estimate of the range of results for all 11 modeled constituents. 

Application of the MAP-W procedure requires development of a local regression model (using local 
basin and storm characteristics as explanatory variables and excluding the predicted value from the 
unadjusted regional model). Although in a real application, a best-regression analysis examining all possible 
combinations of a nominated list of explanatory variables should be performed, this was deemed neither 
feasible nor necessary for testing purposes. For these tests, best-regression analysis was performed using 
only four variables where they were available: total storm rainfall (TRN), drainage area (DA), percent 
impervious area (IA), and antecedent dry days (ADD). The first three variables in this list were most 
consistently found to be significant explanatory variables in the regression analysis by Driver and Tasker 
(1990, p. 17, 21). 

The selection of the additional explanatory variable for the MAP-R-P+nV differed among cities. For 
the Bellevue analysis, the variable ADD was used. Because this variable was not present in the data base for 
Denver or Knoxville, the MAP-R-P+nV for these cities was tested using as the additional explanatory 
variable the most significant variable from the local regression analysis of the calibration data set. 

Test Results 

Comparison among MAP predictive accuracy for the verification data set was made to indicate the most 
accurate MAP for each constituent model for each of the test data bases. None of the MAP’s emerged from 
the split-sample testing as clearly superior for all constituent models and data bases. These test results 
cannot, therefore, be used to indicate the most reliable MAP for any other local data base. These results can 
be used to evaluate proposed procedures for selecting a MAP for a particular constituent and data base, and 
in this way are of benefit to analysts working with other local data bases. The following discussion of test 
results for each data base emphasizes this evaluation process. 

Bellevue 

Results of the split-sample analysis are presented in table 5 for the Bellevue data base. For each 
constituent model, the Rh4SE, (in log units) and the relative ranking for each MAP are reported, along with 
the RMSE, and relative ranking for other estimators; the prediction from the unadjusted regional model, the 
prediction from local regression models, and the mean value of the response variable (in the calibration data 
set). When results for all models were aggregated, the MAP-R-P provided the best predictive accuracy for 
the verification data set, reducing the RMSE, from a mean value of 0.436 log units (or 132 percent) for the 
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Table 5. Root mean square errors and associated rankings for model-adjustment procedures and other estimators for 
verification data sets, compared with rankings for standard error of estimate for corresponding calibration data sets, 
from the data base for Bellevue, Washington 

[Teat resulta from split-aample analysis of calibration and verification data-ret rizer of 41 each; COD, chemical oxygen demand; ‘IKN, total kjcldahl 
nitrogen; PB, total recoverable lead; SS, auspondod aolida; Las, atepwiae-analysis regression model for &OCm-NnOff load; Caa, atepwiae-analyaia 
ngrearion modol for rtorm-runoff mean concentration; L3,3-variablo regression model for storm-mnoff load; MEAN, mean vah~o of reaponae 
variable from calibration data sot used aa an estimator, Unadjusted regional model, the appropriate single-storm model from Driver and Taskot (1990, 
tables 1, 3, and 5); LOC, local regression model based on total storm rainfall, drainage area, impervious area, and antecedent dry days; modol- 
adjustment procedures (MAP’s) do&cd in explanation in text, MA&R-P+nV used antecedent dry days aa additional explanatory variable; MAP-W 
used local regression model defined above in LOC; RMSE, root mean aquarc error for verification data act, in log unita] 

Conatit- 
uant and 
model type 

Unadjuated 
MEAN regional model LOC MAP-IF-P MAP-R-P MAP-R-P + nV MAP-W 

RMSE, Rank RMSE, Rank RMS+. Rank RMSE, Rank RMSE, Rank RMSE, Rank RMS+ Rank 

COD.Lsa 0.465 7.0 0.437 6.0 0.283 4.0 0.257 1.0 0.260 2.0 0.266 3.0 0.283 5.0 
COD.Csa .238 6.0 .397 7.0 .205 1.0 .225 4.0 .226 5.0 .213 2.0 .214 3.0 
COD.L3 ,465 7.0 .409 6.0 .283 5.0 .258 1.0 .260 2.0 .267 3.0 .279 4.0 
TKN.Lsa .498 7.0 .341 6.0 .262 4.0 .253 2.0 .248 1.0 255 3.0 .265 5.0 
TKN.Csa .220 6.0 .289 7.0 .181 1.0 .208 5.0 .207 4.0 .182 2.0 .195 3.0 
TKN.W .498 7.0 .442 6.0 .262 4.0 .251 2.0 .249 1.0 ,255 3.0 .274 5.0 
PB.Lsa 582 7.0 .391 6.0 .325 5.0 .310 2.0 .299 1.0 .316 4.0 .313 3.0 
PB.Csa .331 6.0 ,381 7.0 .317 2.0 .319 4.0 .318 3.0 .278 1.0 .322 5.0 
PB.L3 554 7.0 .439 6.0 .380 5.0 .360 3.0 .338 2.0 .329 1.0 .378 4.0 
SS.Lsa 643 7.0 ,522 6.0 .454 5.0 .401 1.0 .402 2.0 .413 3.0 443 4.0 
SS.Csa .373 4.0 .463 7.0 .377 6.0 .353 2.0 .356 3.0 .352 1.0 .376 5.0 
SS.L3 643 6.0 .721 7.0 .454 4.0 .402 1.0 .403 2.0 .414 3.0 .459 5.0 
--------------------------------------------------------------------------- 

Mean .459 6.4 .436 6.4 .315 3.8 .300 2.3 .297 2.3 .295 2.4 .317 4.3 

Moan Lsa .547 7.0 .423 6.0 .331 4.5 .305 1.5 .302 1.5 .313 3.3 ,326 4.3 

Mean Csa .291 5.5 .383 7.0 .270 2.5 .276 3.8 .277 3.8 .256 1.5 .277 4.0 

Mean L3 .540 6.8 .503 6.3 .345 4.5 .318 1.8 .313 1.8 .316 2.5 .348 4.5 

-----------------_-------------------------------------------------------------------------------------------------------- 
Rankings of standard error of estimate for calibration data sets’ 

MEAN 
Rank 

Unadjusted 
regional model 

Rank 
LOC 
Rank 

MAP-IF-P 
Rank 

MAP-R-P 
Rank 

MAP-R-P + nV 
Rank 

MAP-W 
Rank 

Mean 6.3 6.6 1.2 4.4 3.3 

Mean Lsa 6.8 6.3 1.5 4.0 3.0 

Mean Csa 5.8 7.0 1.0 4.8 3.8 

Mean L3 6.5 6.5 1.0 4.5 3.3 

‘Value ranked for unadjusted regional model is actually root mean square error for calibration data set. 

2.8 3.4 

3.0 3.5 

3.0 2.8 

2.3 4.0 
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unadjusted regional model, to 0.297 log units (or 77 percent). The MAP-lF-P provided almost the same 
RMSEv reduction, to 0.300 log units (or 78 percent). The MAP-W proved least effective in reducing 
RMSE”. 

when results were aggregated only by model type (Lsa, Csa, and L3), a different pattern of MAP 
performance emerged. The results for the Lsa and L3 models were similar to the total-aggregate results 
(MAP-R-P and MAP-lF-P providing the best predictive accuracy). For the Csa models, however, the 
procedures that included local explanatory variables (MAP-R-P+nV and local regression, both of which 
included antecedent dry days as an explanatory variable) gave the best results. 

The success of the proposed MAP selection procedure for this data base is evaluated by comparing, for 
each constituent model, the MAP that was selected on the basis of EDA of the calibration data set (table 2) 
with the MAP that produced the smallest RiUSEv (table 5). In the 11 cases for which a MAP selection was 
made, nine of the selections provided the most accurate MAP. These results support the validity of the 
MAP selection procedure. The support is somewhat weakened, however, by the fact that the procedure does 
not provide a basis for choosing between MAP-R-P+nV and MAP-W. 

As an alternative to the EDA approach to MAP selection, the choice could be guided by relative values, 
among the MAP’s, of SE for the calibration data set. As with the preceding approach, the success of this 
criterion is evaluated by comparing, for each constituent model, the MAP that was selected on the basis of 
minimum SE for the calibration data set with the MAP that produced the smallest RMSEv. The relative 
rankings for SE for the calibration data sets, aggregated by model type, are presented in table 5 in order to 
make this comparison. 

For tbe Bellevue data base, selection on the basis of this criteria would favor the local regression model, 
which was ranked first (smallest values of SE for calibration data set) for both load and concentration 
models. Application of the local regression model to the verification data set, however, yielded among the 
poorest results (largest value of RMSE,,) of all the tested procedures for the load models, and yielded the 
second-ranked results for the concentration model. Similarly, the top-ranked procedures for the verification 
data set for the load models, MAP-lF-P and MAP-R-P, were among the poorest ranked for the calibration 
data set. This mismatch suggests that, whereas it may be possible to calibrate a local regression model so 
that it fits the calibration data set more closely than any MAP, its predictive accuracy might be much smaller 
than the MAP’s for an unmonitored site or storm. Clearly the MAP selection procedure based on EDA is a 
better guide to selection of an appropriate MAP than the relative magnitude of SE for the calibration data 
set. 

Dsnver 

Results of the split-sample analysis are presented in table 6 for the Denver data base. MAP-W provided 
the beat predictive accuracy for almost all of the verification data sets, reducing the RMSE, from a mean 
value of 0.370 log units (103 percent), for the unadjusted regional model, to 0.312 log units (82 percent). 
The MAP-lF-P proved least effective in reducing RA4SEv. MAP performance did not differ significantly 
among model types (Lsa, Csa, and L3). 

The MAP selection procedure based on EDA was successful for the Denver data base. The selected 
MAP (table 3) proved to be the most accurate (smallest RMS&,, table 6) for seven of the nine models 
analyzed. The lack of consistent direction of bias between 0 and P, prompted selection of the 
‘MAP-R-P+nV or MAP-W’ option for almost every model. Although the choice between MAP-R-P+nV 
and MAP-W cannot be made based on EDA, this did not detract substantially because the two MAP’s 
performed almost equally. 
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Table 6. Root mean square errors and associated rankings for model-adjustment procedures and other estimators foi 
verification data sets, compared with rankings for standard error of estimate for corresponding calibration data sets, 
from the data base for Denver, Colorado 

pest results from split-sample l nslysis of calibration and verif~cstion data-set sizes of 56 csch; COD, chemical oxygen de&, TICN, total kjeldsbl 
nitrogen; PB, total recoverable lead; SS, #uspended lolids; h, stepwise-analynis regmmion model for storm-runoff load, Cn, stcpwh-anslyais 
regression model for 8torm-runoff mean concentration; u, 3-variable regression model for rtorm-~noff loa&, MEAN, mean value of ruponse 
vmiablo from calibration dats act used as an estimator, &adjusted regional model, the appropristc single-storm model from Drivar and Tuker (1990, 
tables 1.3, and 5); LOC, lo4 regression model based on total storm rainfall, dminsgc area, and impervious area; modcl-adjustmentprocodurer 
(MAF%) defined in explanstion in tcx$ MAP-R-P+nV used drainage area aa additional explanatory variable in losd models, total storm rainhll in 
mean concentrstion models; MAP-W used local regression model defined above in Lot; RMSE., root mean quare error for verification dats set, in 
log units] 

Conrtit- 
uent and 
model type 

Unadjusted 
MEAN regional model LOC MAP-lF-P NIAP-R-P MAP-R-P + nV MAP-W 

RMS+ Rank RMSE, Rank RMSE. Rank RMSE. Rank RMSE, Rank RMSE, Rank RMSE, Rank 

COD.Lsa 0.543 7.0 0.358 5.0 0.306 2.0 0.365 6.0 0.357 3.0 0.358 4.0 0.296 1.0 
COD.Csa .343 7.0 .233 4.0 .228 3.0 .238 6.0 233 5.0 .225 2.0 .220 1.0 
C0D.W S84 7.0 .379 5.0 .303 1.0 .381 6.0 .372 4.0 .367 3.0 .313 2.0 
TKN.Lsa .682 7.0 .377 5.0 .342 2.0 A03 6.0 .373 4.0 .372 3.0 .327 1.0 
TKN.Csa .303 7.0 .282 6.0 .275 4.0 .281 5.0 .266 1.0 .268 2.0 .272 3.0 
TKN.w .682 7.0 .402 6.0 .342 1.0 .395 5.0 .363 4.0 .362 3.0 .346 2.0 
PB.Lsa 1.035 7.0 .474 5.0 .379 2.0 .484 6.0 .453 4.0 A48 3.0 .361 1.0 
PB.Csa .420 7.0 .335 6.0 .285 2.0 .332 5.0 .329 4.0 .327 3.0 .278 1.0 
PB.L3 1.035 7.0 .493 5.0 .379 1.0 .500 6.0 .417 4.0 .398 3.0 .392 2.0 

Mean .625 7.0 .370 5.2 .315 2.0 .375 5.7 .351 3.7 .347 2.9 .312 1.6 

Mean .753 7.0 .403 5.0 .342 2.0 .417 6.0 .394 3.7 .393 3.3 .328 1.0 

Mean Csa .355 1.0 .283 5.3 .263 3.0 .284 5.3 .276 3.3 .273 2.3 257 1.7 

Mean L3 .767 7.0 .425 5.3 .341 1.0 .425 5.7 ,384 4.0 .376 3.0 .350 2.0 

Rankings of standard error of estimate for calibration data sets’ 

Mean 

MEAN 
Rank 

7.0 

Unadjusted 
regional model 

Rank 

5.6 

LOC 
Rank 

1.9 

MAP-lF-P 
Rank 

5.3 

MAP-R-P 
Rank 

3.2 

MAP-R-P + nV 
Rank 

3.4 

MAP-W 
Rank 

1.6 

Mean Lsa 7.0 5.0 3.0 5.7 2.7 3.7 1.0 

Mean Csa 7.0 6.0 1.7 5.0 3.7 3.3 1.3 

Mean L3 7.0 5.7 1.0 5.3 3.3 

‘Value ranked for unadjusted regional model is actually root mean square error for calibration data set. 

3.3 2.3 
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Selection of a MAP based on the relative ranking of SE for the calibration data set (table 6) would favor 
the MAP-W, so that selection guided by this criteria would have been successful (resulted in choosing the 
MAP with the greatest predictive accuracy for the verification data set) for this data base. 

Knoxville 

Results of the split-sample analysis are presented in table 7 for the Knoxville data base. MAP-W 
provided the best predictive accuracy for the verification data sets for the Knoxville data base (table 4), 
reducing RiUSE” from a mean value of 0.674 log units, or 318 percent, for the unadjusted regional model, to 
a mean value of 0.475 log units, or 152 percent. The MAP’s based on P,, alone performed poorly; for 
many models, RiUSE” was larger than for estimation with a constant (the mean value of the response variable 
from the calibration data set), In addition, MAP-R-P+nV, MAP-W, and the local regression model were 
not as successful (compared with the results from the Bellevue and Denver data bases) in reducing RMSE,, 
compared with the mean estimator. 

The MAP selection procedure based on EDA had mixed success for the Knoxville data base. The MAP 
approach was deemed inappropriate (table 4) for five of the nine models analyzed, and so comparison with 
RMSEv (table 7) was not possible. The pattern of Rh4SEv described in the preceding paragraph validates the 
rejection by the EDA of the MAP approach, however. Such a rejection does provide the analyst with some 
useful information, warning the analyst that: (1) other explanatory variables should be sought and included 
in the analysis; or (2) the MAP approach should be abandoned in favor of a simple estimator or collection of 
additional monitoring data. 

For the remaining four models, the selected MAP (MAP-lF-P or MAP-R-P) proved to be the poorest 
performer. The lower reliability of the MAP-selection procedure for the Knoxville data base may be due to 
the large difference (several orders of magnitude) between values of 0 and P, for the calibration data set, as 
evident from the values of root mean square error (table 4). Thus, despite the apparently significant level of 
correlation and consistent bias between 0 and P,,, the MAP’s based on P, alone were not successful in 
reducing error compared with MAP’s that included additional, although weakly correlated, explanatory 
variables. 

Sensitivity analy6i6 

To examine variance of MAP performance as a function of calibration data set size, split-sample analysis 
was repeated several times for the Bellevue data base, using different sixes for the calibration data set. 
Results from this sensitivity analysis are presented in table 8 for calibration data-set (CDS) sixes of 51, 41, 
31, and 21 and for the Lsa and Csa models. Test bias, which might result from selecting biased subsets of 
the CDS, was avoided by random selection of observations for the CDS from the entire data base. For each 
constituent and model form, the random selection and testing was repeated 50 times and the results averaged. 

As expected, RMSE, increased for all MAP’s as CDS size decreased. Because RMSE,, increased by 
different amounts for different procedures, however, the relative ranking among the procedures changed as 
the CDS size decreased. For the load models, the increase in RMSEv was larger for the local regression 
model than for the other procedures. The greater number of explanatory variables and calibration 
coeffkients for the local regression model and MAP-R-P+nV, which causes a larger variance of prediction 
for these procedures, might cause the model to perform more poorly, compared to the other procedures, for 
the smaller CDS size. This also might explain why the MAP-lF-P and MAP-R-P reverse their relative 
ranking to first and second, respectively, as CDS size decreases. The single calibration coefficient in 
MAP-IF-P minimizes the variance of prediction. Although the relative ranking of MAP-W improved with 
decreasing CDS size, the best-performing MAP’s for load models, regardless of CDS size, were the 
MAP-1F and MAP-R-P. 
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Table 7. Root mean square errors and associated rankings for model-adjustment procedures and other estimators for 
verification data sets, compared with rankings for standard error of estimate for corresponding calibration data sets, 
from the data base for Knoxville, Tennessee 

ITest results from split-sample analysis of calibration and verification data-set sixes of 31 each; COD, chemical oxygen demand; TKN, total kjeldahl 
nitrogen; PB, total recoverable lead; SS, suspended solids; Lsa, stepwise-analysis regression model for storm-runoff load; Csa, stepwise-analysis 
regression model for storm-runoff mean concentration; L3, 3-variable regression model for storm-runoff load; MEAN, mean value of response 
variable from calibration data set used as an estimator; Unadjusted regional model, the appropriate single-storm model from Driver and Tasker (1990, 
tables 1, 3, and 5); LOC, local regression model based on total storm rainfall, drainage area, and impervious area; model-adjustment procedures 
(MAP’s) defined in explanation in text; MAP-R-P+nV used impervious area as additional explanatory variable in load models, total storm rainfall in 
mean concentration models; MAP-W used local regression model defined above in LOC; Rh4S& root mean square error for verification data set, in 
log units] 

Constit- 
uent and 
model type 

Unadjusted 
MEAN regional model LOC MAP-l F-P MAP-R-P MAP-R-P + nV MAP-W 

RMS+ Rank RMSE, Rank RMS+ Rank RMSE. Rank RMSE. Rank RMSE, Rank RMSE, Rank 

COD.Lsa 
COD.Csa 
C0D.W 
TKN .Lsa 
TKN.Csa 
TKN.W 
PB.Lsa 
PB.Csa 
PB.L3 
-----------_-- 

Mean 

0.507 
s21 
.507 
.373 
s40 
.373 
.574 
s40 
s74 

.------mm, 

.501 

1.0 0.741 7.0 0.517 3.0 
4.0 .545 7.0 .500 2.0 
1.0 .750 7.0 s17 2.0 
5.0 .868 7.0 .325 1.0 
7.0 .491 1.0 .532 6.0 
6.0 .824 7.0 .325 1.0 
6.0 .653 7.0 .545 2.0 
7.0 .491 1.0 .532 6.0 
6.0 .706 7.0 .545 2.0 

--_--_---_--_-__ ,------------------w 

4.8 .674 6.3 ,482 2.8 

0.553 6.0 0.530 5.0 0.507 2.0 0.521 4.0 
.527 5.0 .529 6.0 .516 3.0 .473 1.0 
~564 6.0 .556 5.0 ,528 3.0 .528 4.0 
.404 6.0 .369 4.0 .337 2.0 .360 3.0 
.495 2.0 .516 5.0 .507 4.0 .505 3.0 
.367 5.0 .363 4.0 .341 3.0 .340 2.0 
.561 4.0 .549 3.0 S67 5.0 .519 1.0 
.495 2.0 ,516 5.0 .507 3.0 .512 4.0 
S61 4.0 .549 3.0 S67 5.0 .518 1.0 

.----------- 

-503 

------- .------_---------_----------------------------- 

4.4 .497 4.4 .486 3.3 .475 2.6. 

Mean Lsa .485 4.0 .754 7.0 .462 2.0 .506 5.3 .483 4.0 .470 3.0 .467 2.7 

Mean Csa .534 6.0 .509 3.0 .521 4.7 .506 3.0 .520 5.3 .510 3.3 .497 2.7 

Mean L3 .485 4.3 .760 7.0 .462 1.7 .497 5.0 .489 4.0 .479 3.7 .462 2.3 

------------------------------------------------------------------------------------------------------------------------- 
Rankings of standard error of estimate for calibration data sets’ 

MEAN 
Rank 

Unadjusted 
regional model 

Rank 
LOC MAP-lF- MAP-R-P MAP-R-P + nV MAP-W 
Rank Rank Rank Rank Rank 

Mean 5.3 7.0 1.3 4.9 3.2 2.4 3.8 

Mean Lsa 5.3 7.0 1.0 4.7 2.7 3.0 4.3 

Mean Csa 4.7 7.0 1.7 6.0 4.3 2.3 2.0 

Mean L3 6.0 7.0 1.3 4.0 2.7 2.0 5.0 

‘Value ranked for unadjusted regional model is actually root mean square error for calibration data set. 
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Table 8. Effect of size of calibration data sets for model-adjustment procedures on root mean square errors for 
verification data sets taken from the Bellevue, Washington, data base 

nest results from split-sample analysis of varying calibration and verification data-set sizes; COD, chemical oxygen demand; TRN, total kjeldahl 
nitrogen; PB, total recoverable lead; SS, suspended solids; Lsa, step-analysis regression model for storm-runoff load, Csa, step-analysis regression 
model for storm-runoff mean concentration; L3,3-variable regression model for storm-runoff load; CDS, calibration data set; MEAN, mean value of 
response variable from calibration data set used as an estimator; Unadjusted regional model, the appropriate single-storm model from Driver and 
Tasker (1990, tables 1, 3, and 5); LOC, local regression model based on total storm rainfall, drainage area, impervious area, and antecedent dry 
days; model-adjustment procedures (MAP’s) defined in explanation in text; MAP-R-P+nV used antecedent dry days as additional explanatory 
variable; MAP-W used local regression model defined above in LOC; RMSE,, root mean square error for verification data set, in log units] 

Unadjusted 
MEAN regional ‘model LOC MAP-l F-P MAP-R-P MAP-R-P + nV MAP-W 

Constit- 
uent anal CDS 
model type size RMS+ Rank RMSE, Rank RMSC Rank RMSK Rank RMSE,, Rank RMSE, Rank RMSE, Rank 

SS.Lsa 21 
COD:Lz:a 21 
TKN.Lsa 21 
PB.Lsa 21 

Mean rank 21 

SS.Lsa 31 
COD.Lsa 31 
TKN.Lsa 31 
PB.Lsa 31 

Mean rank 31 

SS.Lsa 41 
COD.Lsa 41 
TRN.Lsa 42 
PB.Lsa 41 

Mean rank 41 

SS.Lsa ‘51 
COD.Lsa 51 
TKN.Lsa 51 
PB.Lsa 51 

Mean rank 51 

0.618 7.0 0.507 6.0 0.440 5.0 0.375 1.0 0.385 2.0 0.408 3.0 0.418 4.0 
A44 6.0 .452 7.0 .280 4.0 .251 1.0 259 2.0 .267 3.0 .287 5.0 
.482 7.0 .341 6.0 .289 5.0 .251 1.0 .258 2.0 .266 3.0 .275 4.0 
550 7.0 .389 6.0 .361 5.0 .315 1.0 .316 2.0 .322 3.0 .337 4.0 

6.8 6.3 4.8 1.0 2.0 3.0 4.3 

.620 7.0 .511 6.0 .340 1.0 .363 2.0 .372 3.0 .384 4.0 .406 5.0 

.435 6.0 .450 7.0 .268 4.0 .243 1.0 .252 2.0 .258 3.0 .278 5.0 

.477 7.0 .341 6.0 .263 5.0 .247 2.0 .246 1.0 .249 3.0 .261 4.0 

.551 7.0 .392 6.0 .340 5.0 .321 1.5 .321 1.5 .327 4.0 .326 3.0 

6.8 6.3 3.8 1.6 1.9 3.5 4.3 

.618 7.0 .522 6.0 .398 4.0 .376 1.0 .381 2.0 .389 3.0 .407 5.0 
444 6.0 .455 7.0 .255 4.0 .242 1.0 .246 2.0 .248 3.0 .275 5.0 
.476 7.0 .346 6.0 255 4.0 .246 2.5 .245 1.0 .246 2.5 .258 5.0 
.545 7.0 .402 6.0 .328 5.0 .314 2.0 .312 1.0 ,317 3.0 327 4.0 

6.8 6.3 4.3 1.6 1.5 2.9 4.8 

.622 7.0 

.431 6.0 

.489 7.0 

.549 7.0 

.519 
,459 
.355 
.404 

6.0 .387 4.0 .366 1.0 .370 2.0 .377 3.0 .399 5.0 
7.0 .246 4.0 .236 1.0 .240 2.0 ,243 3.0 .267 5.0 
6.0 .257 4.0 .252 3.0 .249 1.0 .250 2.0 ,262 5.0 
6.0 .315 4.0 .310 3.0 .306 1.0 .307 2.0 .318 5.0 

6.8 6.3 4.0 2.0 1.5 2.5 5.0 
---------------------------------------------------------------------------------------------------------------------------- 

22 Procedures for adjusting regional regression models of urban-runoff quality using local data 



Table 8. Effect of size of calibration data sets for model-adjustment procedures on root mean square errors for 
verification data sets taken from the Bellevue, Washington, data base--Continued 

Unadjusted 
MEAN regional model LOC MAP-lF-P MAP-R-P MAP-R-P + nV MAP-W 

Constit- 
uent and CDS 
model type size RMSE, Rank RMSK Rank RMSE, Rank RMSE, Rank RMSE, Rank RMSE., Rank RMSE, Rank 

SS.Csa 21 0.352 4.0 0.448 
COD.Csa 21 ,254 6.0 .409 
TKN.Csa 21 .252 6.0 .298 
PB.Csa 21 .328 6.0 .359 

Mean rank 21 5.5 

SS.Csa 31 .351 6.0 .443 
COD.Csa 31 .253 6.0 .410 
TKN.Csa 31 .247 6.0 .298 
PB.Csa 31 .32O 6.0 .351 

Mean rank 31 6.0 

SS.Csa 41 
COD.Csa 41 
TKN.Csa 41 
PB.Csa 41 

Mean rank 41 

,344 6.0 A48 
.261 6.0 .414 
.245 6.0 .295 
.322 6.0 .361 

6.0 

SS.Csa 51 
COD.Csa 51 
TKN.Csa 51 
PB.Csa 51 

Mean rank 51 

.343 6.0 A43 

.250 6.0 .410 

.24Q 6.0 .294 

.331 6.0 .364 

6.0 

7.0 
7.0 
7.0 
7.0 

7.0 

7.0 
7.0 
7.0 
7.0 

7.0 

7.0 
7.0 
7.0 
7.0 

7.0 

7.0 
7.0 
7.0 
7.0 

7.0 

0.363 6.0 0.340 1.0 0.348 3.0 0.347 
.210 1.0 .230 4.0 .236 5.0 .216 
.231 3.0 .235 4.0 $243 5.0 .220 
.308 3.0 .314 4.0 .324 5.0 .290 

.342 3.0 .338 2.0 .343 5.0 .336 

.202 1.0 .229 4.0 .233 5.0 .211 

.215 2.0 .230 4.0 ,235 5.0 .213 

.296 3.0 .316 4.0 .324 5.0 .288 

.328 2.0 .330 3.0 ,334 4.0 .326 

.198 1.0 .234 4.0 .239 5.0 .212 

.209 3.0 .228 4.0 .232 5.0 .209 

.282 2.0 .308 4.0 .312 5.0 .277 

.326 2.0 .331 3.0 .334 4.0 .323 

.191 1.0 .227 4.0 .230 5.0 .204 

.200 1.0 .225 4.0 .228 5.0 .201 

.293 2.0 .317 4.0 .32Q 5.0 .285 

3.3 

2.3 3.5 5.0 

2.0 3.8 4.8 

1.5 

3.3 

3.8 

4.5 

4.8 

2.0 
2.0 
1.0 
1.0 

1.5 

1.0 
2.0 
1.0 
1.0 

1.3 

1.0 
2.0 
2.0 
1.0 

1.5 

1.0 
2.0 
2.0 
1.0 

1.5 

0.358 5.0 
.219 3.0 
.226 2.0 
.297 2.0 

3.0 

,343 4.0 
.217 3.0 
.216 3.0 
.295 2.0 

3.0 

.342 5.0 

.216 3.0 

.212 1.0 

.287 3.0 

3.0 

.340 5.0 

.208 3.0 

.208 3.0 

.294 3.0 

3.5 

For concentration models, the increase in RMSE, as CDS size decreased was also larger for the local 
regression than for the other procedures. As with the load models, the relative ranking among the other 
procedures remained the same (MAP-R-P-t nV was the best-performing MAP at any CDS size), indicating 
relative insensitivity to CDS size. Performance of the local regression models, however, did prove to be 
sensitive to CDS size. 

Estimating the Accuracy of Model-Adjustment Procedures 

The accuracy of a model-adjustment procedure, and the relative accuracy of each MAP, will be different 
for each local data base (calibration data set). Three estimates of accuracy can be computed and compared 
among the MAP’s for a given local data base. These indices are the coefficient of determination (r-3, the 
standard error of the estimate (SE), and the standard error of prediction (SEP). The ? and SE (defined and 
discussed earlier) are computed from the calibration data, and the SEP is computed when a prediction is 
prepared for an unmonitored site. 
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Although it may be assumed that the MAP with the smallest value of SE and largest value of ? will 
produce the greatest predictive accuracy for an unmonitored site, the results of the split-sample testing 
(tables 5, 6, and 7) illustrate that this interpretation should be made with caution. For most of the 
constituents tested, the MAP with the smallest value of SE (reported in the lower part of tables 5, 6, and 7) 
did not also provide the smallest value of RMSE,,. Exploratory data analysis of the calibration data set and 
application of the MAP selection procedure illustrated in figure 2 is probably a better guide to selection of an 
appropriate MAP than the relative magnitude of SE. 

The SEP, is a measure of the predictive accuracy of the MAP for a particular unmonitored site i. The 
SEPi is computed as a function of the SE of the MAP as well as the difference between explanatory-variable 
values for the unmonitored site and the mean values of the calibration data set. The equations for computing 
SEPi (in log units) for each MAP are presented in Supplement C. The SEPip in percent, can be calculated 
from SEPi, in log units, using the same conversion factors presented in equation 16 for SE. 

Calculation of confidence intervals also can help evaluate the accuracy of the procedures. A lOO(l-ol) 
confidence interval for the true value of the response variable (storm-runoff load or mean concentration) for 
an unmonitored site i and for a selected MAP can be computed by: 

where 
y1: is true (but unknown) value of the response variable at unmonitored site i; 

B, is predicted value at unmonitored site i, from the adjusted model; and 

T is calculated as follows: 

logT=t(~~~p~*sEPi, 
2 

where 
t(,n,,+,j is critical value of the t-distribution for n-p degrees of freedom; 

n is number of observations in the calibration data set; 
p is number of explanatory variables plus 1; and 

SEPi is expressed in log units. 

Example Application 

The following example illustrates the estimation of storm-runoff load for an unmonitored site and a 
single storm, using the four MAP’s with a local data base consisting of 18 storms from five sites. A city 
engineer from City X would like to estimate a storm-runoff load for COD for any size storm and at any 
unmonitored site i in that city. Using the COD load model (Lsa) for region II (Driver and Tasker, 1990, 
table 1) and the determined values for the explanatory variables for that model (TRN; DA; industrial land 
use, LUI; commercial land use, LUC; nonurban land use, LUN; and mean annual rainfall, MAR), the 
engineer calculates a value for storm-runoff load (P,,) to correspond with each monitored storm in the local 
data base. The candidate basin- and storm-characteristic variables to be used as additional explanatory 
variables (for calibrating MAP-R-P+nV) and in local regression models (for calibrating MAP-W) are also 
evaluated. The hypothetical calibration data set is now assembled for City X (table 9). The engineer then 
follows the EDA and MAP selection scheme prescribed in figure 2. The root mean square error is 0.453 in 
log units, or 130 percent. The city engineer decides this is unacceptably large, and proceeds to evaluate the 
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MAP approach. P,, is significantly and positively correlated with 0 (rs is 0.887) and biased in a consistent 
direction relative to 0 (p-value for the signed-rank test is less than O.OOOl), suggesting that either MAP-lF-P 
or MAP-R-P would be appropriate for the COD load model for City X. Because of the small data set size 
(n= 18), the engineer selects MAP-lF-P. Coefficients for MAP-lF-P are then determined by performing a 
set of regression calculations on the calibration data set such as those listed in Supplement B; the results for 
City X are listed in table 9, along with the results for the other MAP’s 

Table 9. Sample of calibration data set and values for standard errors of estimate, bias-correction factors, and 
coefficients for the model-adjustment procedures for City X 

[p, predicted load from unadjusted regional model; 0, observed load; TRN, total atotm rahfall; DA, total contriiuthg drainage area; IA, impecviou 
area; ADD, antecedent dry days; SB, rtandrrd error of ertimatc; BCF, biar-cor~~~tion ficto~ B, @,. & A, 8,. j, coefficienu for the MAP%; 
MAP-IF-P, ringle-factor rcgreuioa againat regional prediction; MAP-R-P, ngruuion against regional prediction; MAP-R-P+ttV, xegreuion l gaitut 
regional prediction and local data; MAP-W, weighted combination of regional pndiction and local-tegteakm pzediction; LOC, local tegmuion 
model; -, additional data not shown] 

P., in 0, in 
pounds pounds 

578 360 
87 29 

285 120 
122 26 
142 41 

E2: 

1.45 
.15 
.62 
.56 
.56 

DA. In IA. in 
l quaro milrr parcant 

0.15 36.1 
.15 36.1 
.15 36.1 
34 56.5 
34 56.5 

*%‘* 

6 
5 
5 
4 
2 

----------------------------------------------------------------------------------------------------------------------- 

Model- 
adjustment 
procedure 

MAP-1PP 0.235 1.25 -0.328 
MAP-R-P 233 1.14 -.397 1.02 
MAP-R-P+nV .229 1.24 ~684 1.14 0.065 
MAP-W 237 1.43 0.262 
LOC .224 1.12 4.44 .914 .265 -1.26 0.029 

The city engineer is now interested in estimating storm-runoff load for COD for a particular 
unmonitored site i (DA = 0.15 square miles, IA = 40 percent, LUI = 5 percent, LUC = 40 percent, 
LUN = 20 percent) for a particular storm of 0.2 inch rainfall (TRN = 0.2 inch) that followed 5 days of no 
rainfall (ADD = 5 days). The mean annual rainfall for City X is 25 inches (MAR = 25 inches). The 
engineer first calculates the value for unmonitored site i predicted from the unadjusted regional model (P,J: 

P~COD)=36.6*(O.2)c~~*(O.l5)~~*(5+1)Lof2~*(4O+1)~261~ 

*(20+2) (-.‘%(25)@% 1.389; 

PJCOD) = 136 pounds. 

Procedure8 for adjusting regional regression modrla of urban-runoff quality using local data 25 



Employing MAP-lF-P, Pd is adjusted to Pd using equation 3, and using the values listed for & and BC’F in 
table 9: 

Pd = 10@=)*136*1.25 = 80 pounds. 

The SEP (in log units) for unmonitored site and storm i for MAP-lF-P is computed using equation A in 
Supplement C, and using the value for SE1F.p listed in table 9, as: 

The value for SEPi expressed in percent units is 60. 

The 95percent confidence interval for the prediction is calculated as follows. The critical value for the t 
distribution for (18-2 = 16) degrees of freedom and a/2 = 0.025 is determined (from a standard statistical 
table) to be 2.12. Then 

T= 1Oc2.‘**0.w>,3.26. 

The values for the lower and upper bounds of the 9%percent confidence interval (& and U,,, respectively) 
are therefore 

L95=1*80 = 25 pouruik, 
3.26 

U95 
= 3.26*80 = 260 pounds: 

A MINITAB program for calculating Pti for each MAP is given in Supplement D. 

Prediction of Annual or Seasonal Urban-Runoff Quality 

A prediction of annual or seasonal urban-runoff load at an unmonitored site i can be obtained by 
applying the procedure described in the preceding example to a series of storms and producing a synthetic 
record of storm loads. Values of storm characteristics that are used as explanatory variables (for example, 
TRN; ADD; duration of each storm, DRN; maximum intensity during a 15minute period, MI15) may be 
determined for the series of storms from the long-term rainfall record for a station near the unmonitored site. 
The synthesized record of storm loads may be reduced to an estimate of mean annual load by summing loads 
from each storm, then dividing by the number of years in the period of the synthetic record. Reduction to 
an estimate of mean seasonal load may be accomplished by summing loads only from the season of interest 
before dividing by the number of years of record. 

SUMMARY 

Water-quality management and load allocations from point and nonpoint sources in urban areas require 
city engineers, planners, and designers to estimate loads and mean concentrations of constituents in storm 
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runoff. Although many deterministic and statistical models of urban-runoff quality are available, these 
models were calibrated using either national, regional, or local data bases for only a few selected cities. 
When the city engineer can assemble data on urban-runoff quality from a local monitoring network, he may 
wish to adjust the ‘u priori’ prediction from the model with local data. This report presents four statistical 
procedures, MAP’s, by which the predictions of urban-runoff quality from existing regression models can be 
combined or weighted with information from local data. 

Each MAP is a form of regression analysis, in which the local data base is used as a calibration data set. 
Regression coefficients are determined from the local data, and the resulting ‘adjusted’ regression models 
can then be used to predict storm-runoff quality at unmonitored sites. The response variable in the 
regression analyses is the observed load or mean concentration of a constituent in storm runoff for a single 
storm. The set of explanatory variables used in the regression analyses is different for each MAP, but 
always includes the predicted value of load or mean concentration from the regional single-storm models 
developed by Driver and Tasker (1990, tables 1, 3, and 5). 

The MAP’s were tested by means of split-sample analysis, using data from three cities included in the 
Nationwide Urban Runoff Program: Denver, Colorado; Bellevue, Washington; and Knoxville, Tennessee. 
The MAP that provided the greatest predictive accuracy for the verification data set differed among the three 
test data bases and among model types (MAP-W for Denver and Knoxville, MAP-lF-P and MAP-R-P for 
Bellevue load models, and MAP-R-P+nV for Bellevue concentration models) and, in many cases, was not 
clearly indicated by the values of SE for the calibration data set. This does not mean, however, that it is 
impossible for the analyst working without a verification data set to anticipate which MAP will provide the 
greatest predictive accuracy for an unmonitored site. A scheme to guide MAP selection based on 
exploratory data analysis of the calibration data set is presented and tested. When 0 and P,, in the 
calibration data set are not strongly correlated (as for Bellevue concentration models and for Knoxville 
models), or when the direction of bias between 0 and P,, is not consistent (as for Denver models), the 
MAP’s based on P, alone (MAP-IF-P and MAP-R-P) should be rejected in favor of either MAP-R-P+nV 
or MAP-W. If, however, correlation between response variable and any of the explanatory variables used in 
MAP-R-P+nV or MAP-W is not strong (as for Knoxville), then these MAP’s cannot be expected to provide 
better predictive accuracy than a simple estimator such as mean value of the response variable in the 
calibration data set. When 0 and P,, in the calibration data set are strongly correlated and related according 
to a consistent direction of bias (as for Bellevue load models), then MAP-lF-P and MAP-R-P are the most 
reliable procedures. 

The MAP’s were tested for sensitivity to the size of a calibration data set. As expected, predictive 
accuracy of all MAP’s for the verification data set decreased as the calibration data-set size decreased, but 
their performance was not as sensitive as for the local regression models. 
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Supplement A. Program (MINITAB) of exploratory data analysis procedures applied to calibration 
data set to guide selection of model-adjustment procedures 

# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

‘EDAMTB’ MACRO 
(‘Exploratory Data Anlysis’) 

This macro performs several tests (exploratory data analysis procedures) on the calibration data set (a 
local data base) to determine which MAP will provide the highest prediction accuracy for an 
unmonitored site or storm in that city. 

Input data for this macro are: 

Cl - value for prediction from the unadjusted regional model for a particular site and storm 
(Pu), in real (not log-transformed) units 

c2 - observed value for that site and storm (0), in real (not log-transformed) units 
c3 - order number for site/storm (for bookkeeping purposes) 

The next five variables are those to be tested (using a best-regression analysis) for inclusion as 
explanatory variables in a local S-variable regression model. The local regression model is then used as 
part of the MAP-W procedure. The variables are also tested for inclusion in the MAP-R-P+nV 
procedure. 

c4 - total rainfall (in.) 
C5 - drainage area (acres) 
C6 - any explanatory variable, in real units 
c7 - any explanatory variable, in real units 
C8 - any explanatory variable, in real units 

Log-transform all variables 

LET Cl1 = LOGTEN(C1) 
LET Cl2 = LOGTEN(C2) 
LET C4 = LOGTEN(C4) 
LET CS = LOGTEN(C5) 
LET C6 = LOGTEN(C6) 
LET C7 = LOGTEN(C7) 
LET C8 = LOGTEN(C8) 
# 
PLOT Cl1 Cl2 
# 
# Calculate root mean square error (log units, Kl), from applying the unadjusted regional model to the 
# calibration data set. If RMSE is acceptably small, the analyst may wish to use the regional model 
# without any adjustment. (Respond ‘Yes’ for ‘Prediction Error of Pu Small?’ in flowchart.) 
# 
LET C21 = (Cl2 - Cll) ** 2 
LET Kl = SUM(C2 l)/N(C21) 
LETKl = SQRT(K1) 
PRINT Kl 
# 
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Supplement A. Program (MINITAB) of exploratory data analysis procedures applied to calibration 
data set to guide selection of model-adjustment procedures--Continued 

# Check to see if regional model captures relative variability among the observations: calculate and test 
# Spearman’s rho, rS. Compare the result (the value for the correlation printed below) against T* listed 
# for selected alpha level (see, e.g., figure 11.9 of Iman and Conover): if Spearman’s rho is greater than 
# the listed T* for a given n, then respond ‘Yes’ for ‘0 and Pu Significantly and Positively Correlated?’ in 
# flowchart. 
# 
RANK: Cl1 c9 
RANK: Cl2 Cl0 
CORRELATION C9 Cl0 
# 
# Now test whether predictions (Pu) are consistently biased relative to observed values (0). If SO, 
# this would indicate the appropriateness of using the predicted value as the single explanatory variable in 
# the adjusted model. Use the signed rank test (paired data) to test for bias. If p-values are smaller than a 
# selected alpha, then respond ‘Yes’ for ‘Consistent Direction of Bias?’ in flowchart. 
# 
LET Cl5 = Cl2 - Cl1 
STEST 0 Cl5 
# 
# Check correlation between response variable (0) and each of the local explanatory variables. If one or 
# more of the candidate explanatory variables are significantly correlated with the response variables, 
# respond ‘Yes’ for ‘0 and Other Explanatory Variables Significantly Correlated?’ in flowchart. 
# 
CORRELATE Cl2 C4 
CORRELATE Cl2 C5 
CORRELATE Cl2 C6 
CORRELATE Cl2 C7 
CORRELATE Cl2 C8 
# 
# First best regression test. Check for best regression model from list of combinations of explanatory 
# variables. Select from among all models with Cp 5 p or high adjusted r2 values. Make final selection 
# in favor of the simplest model with physically logical parameter values. This model would then be used 
# in MAP-W. If the local regression is to be used alone (independent of MAP-W) then it should include 
# total rainfall and drainage area, as a minimum. 
# 
BREG Cl2 C4 C5 C6 C7 C8; 
INCLUDE C4-0; 
BEST 5. 
# 
# Second best regression test. The results of the following best regression should be used in determining 
# which variables should be used in the MAP-R-P+nV method. Variables that are dropped from the 
# equation should not be used. 
# 
BREG Cl2 6 Cl1 C4 CS C6 C7 C8; 
INCLUDE C 11; 
BEST 5. 
END 
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Supplement B. Program (MINITAB) of statistical procedures applied to calibration data set to derive 
coefficients for model-adjustment procedures 

# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

‘CALIBRATEMTB MACRO 

This macro uses the local data base (calibration data set) to derive coefficients for each 
model-adjustment procedure (MAP). Although the user may have selected one MAP as a result of 
exploratory data analysis of the calibration data set, this macro includes all procedures. 

IMPORTANT! ! ! ! ! ! 
In this macro: 
for MAP-R-P+nV, n=5 
for MAP-W, the local regression is a 5-variable model 
The user must revise the number of variables used if so indicated by the EDAMTB results. 

Input data for this macro are: 

Cl - value for prediction from the unadjusted regional model for a particular site and storm (Pu), 
in real (not log-transformed) units 

C2 - observed value for that site and storm (0), in real (not log-transformed) units 
C3 - order number for site/storm (for bookkeeping purposes) 

The local explanatory variables, chosen from using the best regression EDAMTB results, are used in 
the MAP-R-P+nV and MAP-W procedures. This macro is written to use five variables, as listed below. 

C4 - total rainfall (in.) 
C5 - drainage area (acres) 
C6 - any explanatory variable, in real units 
C7 - any explanatory variable, in real units 
C8 - any explanatory variable, in real units 

WARNING!!! Do not attempt to use the data matrix that may be stored in the MINITAB worksheet as a 
result of a preceding execution, during the current MINITAB session, of EDAMTB. The values input 
for Cl-C8 must be in real units. 

K51 - value for SE, in log units, for the regional regressions. Taken from WSP 2363, table 2 (for Lsa 
models), table 6 (for Csa models) and table 3 (for L3 models) 

Log-transform all variables 

LET Cl1 = LOGTEN(C1) 
LET Cl2 = LOGTEN(C2) 
LET C4 = LOGTEN(C4) 
LET CS = LOGTEN(C5) 
LET C6 = LOGTEN(C6) 
LET C7 = LOGTEN(C7) 
LET C8 = LOGTEN(C8) 
# 
NAME C52 ‘LOC’, C53 ‘MAP-lF-P’, C54 ‘MAP-R-P’ 
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Supplement B. Program (MINITAB) of statistical procedures applied to calibration data set to derive 
coefficients for model-adjustment procedures--Continued 

NAME C55 ‘MAP-R-P + ‘, C56 ‘MAP-W’ 
# 
# Procedure 1. MAP-lF-P 
# The no-exponent fitting of observed values against predicted values (recommended by Tasker and 
# Cohn, September 90). Calculate Bo (K2), SE (K3), and BCF (K4) and store results in C53. 
# 
LET K2 = MEAN(C12) - MEAN(C1l) 
LET C53(1) = K2 
LET Cl6 = Cl1 + K2 
LET Cl7 = (Cl6 - C12) 
LET K3 = SUM(C17 ** 2)/(N(C17)-2) 
LET K3 = SQRT(K3) 
LET K4 = SUM(lO**(C17))/N(C17) 
LET C53(10) = K3 
LET C53(11) = K4 
# 
# Procedure 2. MAP-R-P 
# Straight regression of observed values against predicted values (recommended by Will Thomas, 
# October 91). Store results in C54 for coefficients, SE (K12), and BCF (x13). 
# 
REGRESS Cl2 1 Cll; 
COEFFICIENTS C54; 
RESID C15; 
MSE K12. 
LET K12 = SQRT(K12) 
LET K13 = SUM(lO**(ClS))/N(C15) 
LET C54(10) = K12 
LET C54(11) = K13 
# 
# Procedure 3. MAP-R-P + nV 
# Straight regression of observed values against predicted values and additional independent variables. 
# Store results in C55 for coefficients, SE (K16), and BCF (K17). 
# 
REGRESS Cl2 6 Cl1 C4 C5 C6 C7 C8; 
COEFFICIENTS C55; 
RESID C28; 
MSE K16. 
LET K16 = SQRT(K16) 
LET K17 = SUM(lO**(C28))/N(C28) 
LET CSS(l0) = K16 
LET C55(11) = K17 
# 
# Procedure 4. MAP-W 
# Weighting of prediction from unadjusted regional model with prediction from a local regression. 
# 
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Supplement 6. Program (MINITAB) of statistical procedures applied to calibration data set to derive 
coefficients for model-adjustment procedures--Continued 

# First, fit coeffkients for the local (S-variable) regression model and store results in C52 for coefficients, 
# SE (K6), and BCF (K7). 
# 
REGRESS Cl2 5 C4 C5 C6 C7 C8 C99 C30; 
COEFFICIENTS C52; 
RESID c20; 
MSE K6. 
LET K6 = SQRT(K6) 
LET K7 = SUM(lO**(C2O))/N(C20) 
LET CSZ(l0) = K6 
LET C52( 11) = K7 
# 
# Next, compute and store results in C56 for the weighting factor ‘j’, SE (K18), and BCF (K19). 

:ET C56(1) = C52(10)**2/(C52(10)**2+K51**2) 
LET C23 = C56(1)*Cll+(l-C56(1))*C30 
LET C24 = (C23 - C12) 
LET K18 = SUM(C24**2)/(N(C24)-2) 
LETK18 = SQRT(K18) 
LET K19 = SUM(lO**(C24))/N(C24) 
LET C56(10) = K18 
LET C56(11) = K19 
# 
# Printout results 
# 
PRINT C52-C56 
WRITE ‘COEFF.DAT’ C52-C56 
END 
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Supplement C. Formulas for standard error of prediction for model-adjustment procedures 

MAP-NF-P 

where 
SEPi is standard error of prediction for unmonitored site i; . SEIFmp 1s standard error of estimate (in log units) for the calibration of equation 1; and 

n is number of observations in the calibration data set. 

MAP-R-P 

where 
SE,, is standard error of estimate (in log units) for the calibration of equation 5; 

& is a (1 x 2) row vector containing 1 as the first element, and the value for the single 
explanatory variable, P,, evaluated (in log units) for unmonitored site i, 
augmented by a 1 as the first element; and 

U is a (n x 2) matrix containing 1 as the first column, and the values for the single 
explanatory variable, P,, evaluated (in log units) for all n sites in the R-P 
calibration set, in the second column. 

MAP-R-P+ nV 

where 
SER-P+nV is standard error of estimate (in log units) for the calibration of equation 7; 

Yi is a (1 x 5) row vector of the&l explanatory variables (the variable P,, and the j-2 
additional explanatory variables) used in the R-P+nV regression, evaluated (in 
log units) for unmonitored site i, augmented by a 1 as the first element; and 

Y is a (n XJ] matrix of thej-1 explanatory variables used in the local regression, evaluated 
(in log units) for all n sites in the R-P+nV calibration data set, augmented by 
a 1 as the first column. 
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Supplement C. Formulas for standard error of prediction for model-adjustment procedures- 
Continued 

MAP-w 

SEP,= 
V 

r 

I-bc*vpl-” 
V pl-lo~+vpl-Y * 

where 
V pi~oc and Vpiu are as defined in equations 11 and 12. 
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Supplement D. Program (MINITAB) applied to data from an unmonitored site to calculate the 
prediction using model-adjustment procedures 

# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

‘PREDICTMTB’ MACRO 

This macro computes a predicted value for an unmonitored site/storm(s) using each MAP. To do 
this, it uses the output file generated from CALIBRATE.MTB, which contains coefficients 
(determined using the local database) for each MAP. This macro, like CALIBRATE.MTB, is 
written for the inclusion of all five additional variables in MAP-R-P+nV (n=S) and use 
of all five variables in the local regression used in MAP-W. THE USER MUST CHANGE THE 
FORMULAS IF EDA.MTB AND CALIBRATEMTB SO INDICATE!!! 

Input data for this macro are: 

The output file from CALIBRATE.MTB, which is read into C51-C56 automatically if user does not 
exit MINITAB. 

Cl - predicted value for unmonitored site/store from Driver-Tasker equations and reported 
in real (not log-transformed) units 

c3 - order number for site/storm (for bookkeeping purposes) 
c4 - total rainfall (in.) 
c5 - drainage area (acres) 
C6 - any explanatory variable, in real units 
c7 - any explanatory variable, in real units 
C8 - any explanatory variable, in real units 

NAME C30 ‘Pa-LOC’, C36 ‘Pa-lF-P’, C39 ‘Pa-R-P’, C42 ‘Pa-R-P+’ 
NAME C45 ‘Pa-W’ 
# 
# Compute a predicted value using the MAP-lF-P procedure (the Bl-forced-to-unity fit of observed 
# against predicted). 
# 
LET C36 = 1o**(c53(1))*cl*c53(11) 
# 
# Compute a predicted value using the MAP-R-P procedure (the ‘regular’ regression of observed 
# against predicted). 
# 
LET C39 = lO**(C54(1))*Cl**(C54(2))*C54(11) 
# 
# Compute a predicted value using the MAP-R-P+nV procedure (regression of observed against 
# predicted value and five explanatory variables) 
# 
LET C42 = lO**(C55(1))*Cl**(C55(2))*C4**(C55(3))*C5**(C55(4))*C6**(CS5(5))& 
*C7**(C55(6))*CS**(C55(7))*C55(11) 
# 
# Compute a predicted value using the MAP-W procedure. First, compute a predicted value using 
# coefftcients (derived from the calibration dataset) for the 5variable regression model based on local 
# data alone. 
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Supplement D. Program (MINITAB) applied to data from an unmonitored site to calculate the 
prediction using model-adjustment procedures--Continued 

[ET C30 = lO**(C52(1))*C4**(C52(2))*C5**(C52(3)) 
LET C30 = C3O*C6**(C52(4))*C7**(C52(5))*CS**(C52(6))*C52( 11) 
# 
# Now apply the MAP-W prediction equation: 

[ET C45 = Cl**(C56(1))*C30**(1-C56(1))*C56(11) 
# 
# Print results 
# 
PRINT C3O,C36,C39,C42,C45 
END 
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